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Abstract

With the increasing prevalence of multi-view and free-

view displays, virtual view synthesis has been extensively

researched. In view synthesis, texture and depth images

are typically fed into a depth-image-based-rendering (DI-

BR) algorithm to generate the new viewpoints. In contrast

to the enormous amount of research effort on the quality

assessment of texture images and rendering process, much

less effort has been dedicated to the quality evaluation of

depth images. To fill this gap, this paper presents a quality

metric of depth images for view synthesis. Depth image rep-

resents information relating to the distance of the surfaces

of scene objects from a viewpoint, and edge conveys key lo-

cation information in depth image, which is extremely im-

portant in view rendering. Therefore, the proposed metric is

developed with emphasis on measuring the edge character-

istics of depth images. Firstly, a similarity map is computed

between the distorted and reference depth images by com-

bining intensity and gradient information. Then an adaptive

weighting map is calculated by integrating depth distance

and location characteristics in the depth image. Finally,

an edge indication map is computed and utilized to guide

the pooling process, producing the overall depth quality s-

core. Extensive experiments and comparisons on the pub-

lic MCL-3D database demonstrate that the proposed metric

outperforms the relevant state-of-the-art quality metrics.

1. Introduction

In recent years, multi-view and free-view videos have

become more and more popular. View synthesis is a key

technique in these applications. In view synthesis, texture

and depth images are utilized to generate the new view-

points, where depth-image-based-rendering (DIBR) [9] is

the most widely used approach. The perceptual quality of

synthesized view is mainly determined by three aspects,
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namely the quality of texture and depth images as well as

the DIBR algorithm [2]. Distortions in texture image typi-

cally transfer to the synthesized view directly, and the exist-

ing quality metrics can handle this properly. Recently, great

effort has also been put on the quality evaluation of the ren-

dering operation [6, 20, 1, 21, 14, 33]. In contrast, depth im-

ages are used to guide the warping operation in DIBR, and

distortions in depth images are quite different from those in

texture images and the rendering process. How to accurate-

ly evaluate the quality of depth images in view synthesis is

still an open problem. In this paper, we try to fill this gap

by proposing an objective depth image quality assessment

method for the application of view synthesis.

To the authors’ best knowledge, only a few metrics have

been proposed for predicting the depth image quality in

view synthesis. In [8], a novel Blind Depth Quality Metric

(BDQM) was proposed to evaluate the compression distor-

tions in depth images. The gradient map of a depth image

was first calculated to locate the pixels, which are sensi-

tive to the compression distortion. Then the histogram of

compression sensitive pixels and their neighborhood were

constructed to evaluate the quality of depth images. In

[28], a no-reference depth quality assessment was proposed

based on two-step edge misalignment error matching be-

tween depth image and texture image. The edge matching

was based on the following three criteria, namely spatial

similarity, edge orientation similarity and segment length

similarity. Then the matching result was utilized to com-

pute the bad point rate (BPR), which was defined as the

depth quality score. In [13], a reduced-reference depth qual-

ity metric was proposed using a pair of color and depth

images. The depth distortions were first calculated based

on the edge directions in the neighborhood. Then Gabor

filtering was conducted on the texture image to produce a

weighting map. Finally, the local depth distortions were

pooled into an overall quality score with the guidance of

the weighting map.

The aforementioned metrics have achieved notable ad-

vances in predicting the quality of depth images. Meantime,

1



Figure 1. SSIM maps of the synthesized images using distorted depth maps. First row: distorted depth maps; Second row: synthesized

images using depth images in the first row and undistorted texture images; Third row: SSIM maps between the synthesized images and

reference images. (a) Additive white noise; (b) Gaussian blur; (c) JP2K; (d) JPEG; (e) Down-sampling blur; (f) Transmission error.

it is noted that the method in [8] is specifically designed for

compression distortion. In [28, 13], texture image is further

needed for predicting the depth image quality. In practice,

depth images may be subject to different kinds of distor-

tions, which is similar to natural scene images. Therefore,

it is highly desirable to develop a depth image quality metric

that is capable of evaluating diversified distortions. Ideally,

the evaluation can be done using the depth image directly.

With these considerations, this paper presents a depth image

quality metric for view synthesis, which can be used to eval-

uate the general distortions in depth images without refer-

encing to the corresponding texture images. The design phi-

losophy of the proposed method is to measure the edge char-

acteristics in the depth images, which convey rich informa-

tion in the rendering process and thus directly influence the

quality of the synthesized view. To be specific, a similarity

map is first generated between the distorted and reference

depth images, which takes into account both intensity and

gradient characteristics. Then an adaptive weighting map is

computed by combining the depth distance and location pri-

or. Finally, an edge indication map is calculated and utilized

to guide the pooling, producing the overall depth quality s-

core. The performance of the proposed metric is evaluated

on the MCL-3D view synthesis quality database. Extensive

results demonstrate that the proposed method outperforms

the state-of-the-arts.

2. Distortion Analysis of Depth Images

In view synthesis, original views are warped to the 3D

space followed by an inverse warping to the target view. In

this process, depth image is used to guide both the forward

and backward warping. Since depth image represents the

distance of objects in a scene from a viewpoint, it typically

consists of many homogeneous regions. Edges in an depth

image convey key information relating to the varying dis-

tances of objects, which have great influence on the quality

of view synthesis. These characteristics are quite differen-

t from those of natural scene images. To have an intuitive

understanding of the characteristics of depth distortions, in

Figure 1 we show some distorted depth maps in MCL-3D

database [23]. Since depth image is not directly used for

human viewing, here we further show the corresponding

synthesized images and the SSIM [24] maps, where dark-

er region indicates more severe distortion. In this exam-

ple, undistorted texture images are adopted in the rendering

process, so the degradations in the synthesized images are

purely introduced by the distorted depth maps.

From the SSIM maps in Figure 1, it is easily observed

that the distortions in the synthesized images are mainly

concentrated in the edge regions. This is most pronounced

in Figure 1(a), where the additive white noise is present. For

example, obvious noise exists inside the balloon and human

body in the depth map, however in the synthesized image

the observed distortions are mainly distributed around their

boundaries. This further confirms the fact that the distor-

tions in view synthesis mainly come from the edge regions

in the depth maps. Following this observation, the proposed

depth quality metric is designed with emphasis on measur-

ing the distortions in edge regions.

3. Proposed Depth Quality Metric

The flowchart of the proposed depth quality metric is

shown in Figure 2. It consists of three main stages, namely

similarity map generation, weighting map generation and
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Figure 2. Flowchart of the proposed depth image quality metric.

edge guided pooling. All of them operate based on block

partition. In the subsequent subsections, we shall detail on

each of them respectively.

3.1. Similarity Map

In the proposed metric, the similarity between a distorted

depth image and the corresponding reference image is cal-

culated in both intensity and gradient domains after block

partition. In this paper, the reference and distorted depth

images are denoted by I
r and I

d, and both of them have

size W ×H . In implementation, we divide the image into

blocks of size M × M . The reference and distorted in-

tensity block sets are denoted by {I
r
ij} and {I

d
ij}, where

i = 1, 2, · · · , ⌊W
M
⌋, j = 1, 2, · · · , ⌊H

M
⌋, and ⌊·⌋ denotes the

floor operation. Accordingly, the gradient block sets are de-

noted by {G
r
ij} and {G

d
ij}, respectively.

In order to compute the intensity similarity, the average

depth intensity of a block is first calculated as

vkij =
1

M2

M
∑

x=1

M
∑

y=1

I
k
ij(x, y) (1)

where k ∈ {r, d} denotes the reference or distorted depth

image. Then the intensity similarity can be calculated as

SIij =
2 · vrij · v

d
ij + c1

(vrij)
2 + (vdij)

2 + c1
(2)

where c1 is a small constant to avoid numerical instability.

Image gradient is typically calculated by convolving

with a linear filter. Taken into account computation com-

plexity and anti-noise capability, the Prewitt filter [7] is

adopted. Given a depth image block I
k
ij , k ∈ {r, d}, the

gradient map is calculated as

G
k
ij =

√

(Gk
ijx)

2 + (Gk
ijy)

2 (3)

G
k
ijx = I

k
ij ∗





1/3 0 −1/3
1/3 0 −1/3
1/3 0 −1/3



 (4)

G
k
ijy = I

k
ij ∗





1/3 1/3 1/3
0 0 0

−1/3 −1/3 −1/3



 (5)

where G
k
ijx, G

k
ijy denote the gradients in horizontal and ver-

tical directions respectively, and ∗ denotes the convolution.

The gradient similarity is then calculated as

SGij =
1

M2

M
∑

x=1

M
∑

y=1

2 · G
r
ij(x, y) · G

d
ij(x, y) + c2

(Gr
ij(x, y))

2 + (Gd
ij(x, y))

2 + c2
(6)

where c2 is another small constant, which function similarly

with c1.

With the intensity and gradient similarities, we conduct

a simple fusion of them to obtain the overall similarity map,

which is defined as

Sij = (SG
ij )

λ · (SI
ij)

(1−λ) (7)

where λ∈[0, 1] is a weight to balance the relative impor-

tance between gradient and intensity.

An characteristic of the Human Visual System (HVS) is

that human eyes are only sensitive to distortions above a vis-

ibility threshold. Considering this, a threshold is employed

to process the initial similarity map as follows

Sij =

{

TS , if Sij ≥ TS

Sij , otherwise
(8)
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Figure 3. An example of generated weighting map. (a) Original

depth image; (b) Weighting map generated using our method.

where TS denotes the visibility threshold. Note that Sij is

a similarity measure, so lower value indicates bigger differ-

ence.

3.2. Weighting Map

In digital images, regions have different contributions to

the perceived quality, which is mainly due to the masking

effect. In the quality assessment community, visual saliency

has been the most popular technique to adapt to the charac-

teristics of the HVS [31]. However, different from natural

images, depth images are not for human consumption. So

the existing saliency models for natural scene images are

not applicable to depth images. In this part, we propose a

new weighting strategy for depth images by combining a

location prior and a depth distance measure.

It has been demonstrated that human eyes tend to pay

more attention to the objects near image center [11], i.e.

location prior. Therefore, distortions near the image center

cause more damage to the visual quality. Location prior has

been adopted in the existing visual saliency modelling [30].

Following this principle, the block-wise location weight can

be computed as

WL
ij = exp

(

−
‖L

r
ij − C‖22
σ2
L

)

(9)

where L
r
ij denotes the coordinate of the block center in rel-

ative to the whole image center C, and σL is a constant to

control the weight decaying from inside to outside.

Another characteristic in depth perception is that peo-

ple are more easily attracted by objects closer to their eyes.

Inspired by this, a block depth distance weight is further

defined as

WD
ij = exp

(

(vrij)
2

σ2
D

)

(10)

where {vrij} is the average of a depth block I
r
ij , σD is an-

other constant to control the decaying rate.

With the location weighting map and depth distance

weighting map, we further fuse them to get the final weight-

ing map

Wij = WL
ij ·W

D
ij . (11)

Figure 4. Top: Depth images; Middle: Binary maps detected by

Canny operator; Bottom: Edge indication maps.

Figure 3 shows an example of weighting map generated

using the proposed method, where brighter regions repre-

sent bigger weights and thus are more important in depth

quality perception. It is evident that the salient regions de-

tected are consistent with human perception.

3.3. Edge Indication Map

As stated before, the proposed metric is designed with

emphasis on measuring the edge characteristics in depth

maps. Since our method operates block-wisely, we propose

to generate an edge indication map to facilitate the subse-

quent pooling. The Canny edge detector [4] is first applied

on I
r to produce a binary edge map C

r.Then the edge map is

also divided into non-overlapping blocks with size M ×M ,

which is denoted by {C
r
ij}. Then the number of edge pixels

in a block is used to determine whether it is an edge block

or not. If a block is a edge block, it is assigned a label ‘1’,

otherwise label ‘0’. Then we get the edge indication map as

follows

Eij =

{

1, sum(Cr
ij) ≥ α×M2

0, sum(Cr
ij) < α×M2 (12)

where sum(·) counts the number of edge pixels in a block,

and α ∈ [0, 1] controls the classification threshold.

Figure 4 shows two examples of the edge indication

maps, from which we know that the edge blocks can be ac-

curately selected.

3.4. Edge Guided Pooling

The overall depth quality score is generated by pooling

the similarity map and weighting map with the edge indica-

tion map as a guidance. Specifically, with Sij ,Wij and Eij ,

4



edge guided pooling is performed as

S =

∑⌊W

M
⌋

i=1

∑⌊ H

M
⌋

j=1 Eij · Sij ·Wij

∑⌊W

M
⌋

i=1

∑⌊ H

M
⌋

j=1 Eij ·Wij

. (13)

The final quality score is converted to the range (0, 1]

using a logarithmic function [15],

Q = log(1−TS)(1− S) (14)

where TS is the visibility threshold used in equation (8). A

higher score indicates better quality.

4. Experimental Results and Discussions

4.1. Experimental Settings

The performance of the proposed metric is evaluated

on depth images from MCL-3D database [23], which was

built for view synthesis quality assessment. The database

contains nine 2D-image-plus-depth scenes, each with three

viewpoints. There are six different types of distortions in

the database, including additive white noise (AWN), gaus-

sian blur (GB), down-sampling blur (DB), JPEG compres-

sion(JPEG), JPEG2000 compression(JP2K) and transmis-

sion error (TE). For each distortion type, four distortion

levels are included. There are three configurations in the

database, namely view synthesis using (1) undistorted tex-

ture and distorted depth, (2) distorted texture and undistort-

ed depth, (3) distorted texture and distorted depth. Since

we focus on depth quality, we use images in scenario (1).

In this case, undistorted texture and distorted depth images

are used in DIBR, so the distortions in the synthesized im-

ages are mainly caused by the degraded depth. In total, 648

depth images are used in our experiment. Since there is no

annotation for the quality of depth images, we use the Mean

Opinion Score (MOS) of the corresponding synthesize im-

age as ground truth.

Four criteria are used for performance evaluation, in-

cluding Pearson Linear Correlation Coefficient (PLCC),

Root Mean Square Error (RMSE), Spearman Rank order

Correlation Coefficient (SRCC) and Kendalls Rank Corre-

lation Coefficient (KRCC). PLCC and RMSE measure pre-

diction accuracy, while SRCC and KRCC measure predic-

tion monotonicity. Higher PLCC, SRCC, KRCC values

and lower RMSE value represent better performance. Be-

fore computing PLCC and RMSE, a five-parameter logistic

function is employed to map the predict scores to the range

of the subjective scores [3]:

f(x) = β1

(

1

2
−

1

1 + eβ2(x−β3)

)

+ β4x+ β5 (15)

where β1, β2, β3, β4, β5 are the fitting parameters. Other

parameters in the proposed metric are set as follows, M =
16, α = 0.1, c1 = 0.001, c2 = 0.009, λ = 0.85, TS =
0.998, σL = 114, σD = 122.

Metric PLCC SRCC KRCC RMSE

PSNR 0.7947 0.6972 0.5219 0.9726

SSIM [24] 0.8069 0.6418 0.4723 0.9464

GMSD [29] 0.7560 0.7386 0.5510 1.0489

MSSSIM [26] 0.8022 0.6283 0.4635 0.9565

IWSSIM [25] 0.8223 0.6819 0.5112 0.9117

FSIM [32] 0.8290 0.6498 0.4860 0.8961

GSM [16] 0.8151 0.6571 0.4880 0.9281

IGM [27] 0.7991 0.6759 0.4997 0.9633

VIF [22] 0.5268 0.5294 0.3918 1.5893

MAD [12] 0.7786 0.7226 0.5423 1.0053

VSI [31] 0.6796 0.5944 0.4241 1.1754

PSNRHVSM [18] 0.7421 0.7025 0.5240 1.0740

VSNR [5] 0.6072 0.5662 0.4100 1.2730

BDQM [8] 0.3591 0.3623 0.2464 1.7031

BPR [28] 0.5938 0.5539 0.4024 1.2637

Proposed 0.8816 0.8436 0.6588 0.7562

Table 1. Performances comparison on the MCL-3D database.

4.2. Performance Evaluation

Comparison with State-of-the-arts. The performance

of the proposed metric is compared with two representa-

tive depth quality metrics, i.e., BDQM [8] and BPR [28].

We also tested 13 state-of-the-art natural scene image qual-

ity metrics, with the aim to have an intuitive understanding

on how they perform on depth images. These metrics are

PSNR, SSIM [24], GMSD [29],MSSSIM [26], IWSSIM

[25], FSIM [32], GSM [16], IGM [27], VIF [22], MAD

[12], VSI [31], PSNRHVSM [18] and VSNR [5]. The ex-

perimental results are summarized in Table 1. It is evident

that the proposed method achieves the best performance a-

mong all the tested metrics. The BDQM metric is specif-

ically designed for compression distortion, so it does not

perform very well on the whole database, which contains

six types of distortions.

To intuitively show the superiority of the proposed met-

ric, Figure 5 shows the scatter plots of the predicted scores

versus the subjective scores by different quality metrics. As

can be seen from Figure 5, the proposed metric produces the

best fitting result and the scatter points gather most closely

around the fitted curve. These results indicate that the pro-

posed metric can produce quality scores that correlate best

with the subjective ratings.

Comparison of Edge Detectors. In our implementa-

tion, the Canny edge detector is adopted to generate the

edge map. For comparison, we also included the results

when other commonly used edge detectors are utilized, in-

cluding Roberts [19], Sobel [10], Prewitt [7] and Log [17].

Table 2 summarizes the experimental results. It is easily ob-

served from the table that the Canny edge detection method

achieves the best performance. This may attribute to the ad-

vantage of Canny operator that it incorporates a mechanism

to prevent one edge from multiple responses.
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Figure 5. Scatter plots of the subjective scores in the MCL-3D database versus the objective scores predicted by different IQA metrics.

Detector PLCC SRCC KRCC RMSE

Roberts [19] 0.7820 0.7066 0.5295 0.9986

Sobel [10] 0.7643 0.6974 0.5199 1.0333

Prewitt [7] 0.7664 0.6991 0.5202 1.0292

Log [17] 0.8594 0.8094 0.6242 0.8191

Canny [4] 0.8816 0.8436 0.6588 0.7562

Table 2. Performances of the proposed metric when different edge

detectors are adopted.

Impact of Block Size. To evaluate the influence of block

size on the performance of the proposed method, we tested

the performances when different block sizes are adopted,

ranging from 4 × 4 to 64 × 64. Table 3 summarizes the

experimental results of different block sizes, where the best

result has been marked in boldface. It can be observed that

when block size is 16×16, the performance of the proposed

metric is the best. Therefore, block size 16× 16 is adopted

in this work.

Size PLCC SRCC KRCC RMSE

4 × 4 0.7545 0.7852 0.5974 1.0515

8 × 8 0.8421 0.8152 0.6225 0.8248

16 × 16 0.8816 0.8436 0.6588 0.7562

32 × 32 0.8624 0.8158 0.6259 0.8126

64 × 64 0.6213 0.6066 0.4577 1.1838

Table 3. Performances of the proposed metric adopting different

block sizes.

Impact of Edge Indication Map. In the proposed met-

ric, edge indication map is employed to reject the non-edge

blocks during the pooling. In order to demonstrate the su-

periority of the edge indication map, we conduct a com-

parative study. Specifically, we test the performance of

the proposed metric by removing the edge indication map

while keeping other elements unchanged. Figure 6 shows
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Figure 6. Impact of the edge indication map on the performance of

the proposed method.

the performance of the proposed metric with/without us-

ing the edge indication map during the pooling stage. It

is obvious that by incorporating the edge guided pooling,

the performance of the proposed metric improves by a large

margin. To be specific, after incorporating the edge indi-

cation map, the PLCC and SRCC values are improved by

9.03% and 20.91%, respectively. As a result, the proposed

edge indication map is very effective in locating the visually

important regions, which facilitate the overall evaluation.

Metric
Without map With map Performance gain

PLCC SRCC PLCC SRCC PLCC SRCC

SSIM [24] 0.8069 0.6418 0.8349 0.8045 3.47% 25.35%

GMSD [29] 0.7560 0.7386 0.8031 0.7687 6.23% 4.08%

MSSSIM [26] 0.8022 0.6283 0.8302 0.7581 3.49% 20.66%

FSIM [32] 0.8290 0.6498 0.8321 0.8036 0.37% 23.67%

GSM [16] 0.8151 0.6571 0.8473 0.8175 3.95% 24.41%

Table 4. Performances of representative IQA metrics with/without

using the edge indication map.

In order to further demonstrate the universality of the

proposed edge indication map, we replace the similarity

map generation part of the proposed method using five pop-

ular quality metrics (SSIM [24], GMSD [29], MSSSIM

[26], FSIM [32], GSM [16]) and test their performances

before and after using the edge indication map. Table 4

summarizes the experimental results as well as a statistics

of the performance gains. It is known from the table that

the performances of all tested quality metrics improve af-

ter incorporating the edge guided pooling. particularly for

the monotonicity criterion SRCC, four of them delivered

more than 20% performance gains, which is significant. As

discussed earlier, distortions in the non-edge regions have

little damage to the quality of the synthesized views. The

proposed edge indication map is designed by considering

the inherent characteristics of depth images, so it is very

helpful in determining the visually important edges.

Evaluation of Weighting Map. In the proposed met-

ric, location prior and depth distance of the blocks are com-

bined to generate the weighting map, which is inspired by

the HVS. To demonstrate the effectiveness of the weight-

ing map, five representative IQA metrics, including SSIM

[24], GMSD [29], MSSSIM [26], FSIM [32], VSI [31], are

tested by incorporating the proposed weighting map. In S-

SIM and MSSSIM, average pooling is used. In GMSD,

standard deviation pooling strategy is adopted. In FSIM,

phase congruency pooling strategy is employed. In VSI, S-

DSP saliency detection map [30] is used as pooling map.

The proposed method adopts average pooling strategy for

performance comparison. To save space, only PLCC and

SRCC values are reported here. Table 5 summarizes the

performances of the six metrics.

Metric
Original pooling Propsoed pooling Performance gain

PLCC SRCC PLCC SRCC PLCC SRCC

SSIM[24] 0.8069 0.6418 0.7755 0.6047 -3.90% -5.79%

GMSD[29] 0.7560 0.7386 0.8077 0.6600 6.84% -10.64%

MSSSIM[26] 0.8022 0.6283 0.7832 0.5932 -2.37% -5.59%

FSIM[32] 0.8290 0.6498 0.7957 0.6097 -4.02% -6.17%

VSI[31] 0.6796 0.5944 0.6934 0.5801 2.03% -2.40%

Proposed 0.8639 0.8353 0.8816 0.8436 2.05% 0.99%

Table 5. Performances of the representative IQA metrics with dif-

ferent pooling strategies.

It can be seen from the table that the performances of

most traditional natural scene quality metrics drop after

adopting the proposed pooling strategy, while the proposed

method achieves a better performance. This indicates that

the proposed pooling strategy is designed for depth images,

and it is not readily applicable to natural scene images. Al-

though the performance of the proposed metric with average

pooling is worse than the final pooling, it still outperforms

all the other state-of-the-art metrics. These results not only

demonstrate the necessity of the proposed weighting map,

but also further confirm the validity of the similarity calcu-

lation of the edge blocks.

Performance on Individual Distortion Types. In this

part, we evaluate the performances of all the aforemen-

tioned metrics on different distortion types in the MCL-3D

database. The experimental results are listed in Table 6.

Due to space limit, we only report the results on PLCC and

SRCC, and in experiment we find that the results on KRCC

and RMSE lead to similar conclusion. It can be observed

from the table that FSIM achieves the best performance on

noise distortion, and MAD delivers the best performance on

transmission distortion. For the other four types of distor-

tions, the proposed metric performs the best. Furthermore,

all metrics, except VIF and BDQM, perform better on AWN

distortion than other types of distortions. The reason may

be explained as follows. As has been observed in section 2,

AWN distortion in the depth images cause the most serious

damage to the quality of synthesized views, so the AWN
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Metric
AWN GB JP2K JPEG DB TE

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

PSNR 0.8428 0.8347 0.6249 0.5287 0.6293 0.3198 0.6514 0.6429 0.6164 0.4411 0.6063 0.5845

SSIM [24] 0.8606 0.8623 0.4698 0.4261 0.5470 0.3791 0.6818 0.6815 0.6020 0.5455 0.7629 0.7901

GMSD [29] 0.8150 0.7906 0.8008 0.4883 0.6916 0.3836 0.6306 0.5418 0.7887 0.4703 0.6741 0.6771

MSSSIM [26] 0.9046 0.8943 0.4478 0.4443 0.6443 0.3574 0.6850 0.6778 0.4704 0.4842 0.7539 0.7676

IWSSIM [25] 0.8701 0.8892 0.5504 0.5310 0.4821 0.4220 0.6976 0.6581 0.4939 0.4560 0.7736 0.7532

FSIM [32] 0.9256 0.9441 0.4717 0.3782 0.6602 0.3131 0.6597 0.6199 0.5735 0.5222 0.7750 0.7651

GSM [16] 0.8809 0.8913 0.3827 0.2004 0.6889 0.3929 0.6524 0.6506 0.3977 0.1883 0.7150 0.7391

IGM [27] 0.8273 0.8320 0.4703 0.4059 0.6789 0.3518 0.5846 0.5027 0.5846 0.5652 0.7670 0.7811

VIF [22] 0.5991 0.5837 0.4463 0.4096 0.4967 0.4333 0.5807 0.5499 0.3828 0.2340 0.7536 0.7776

MAD [12] 0.8110 0.7777 0.7749 0.3598 0.5975 0.4278 0.6006 0.5554 0.7713 0.5036 0.8327 0.8486

VSI [31] 0.7948 0.8502 0.3317 0.2258 0.3039 0.2778 0.5106 0.3305 0.3285 0.3292 0.7115 0.7459

PSNRHVSM [18] 0.8199 0.8275 0.6077 0.4985 0.6136 0.2039 0.5856 0.5129 0.6178 0.4281 0.6762 0.6680

VSNR [5] 0.8052 0.8064 0.4479 0.4319 0.2535 0.1872 0.3716 0.3365 0.2585 0.3803 0.4054 0.5111

BQDM [8] 0.4504 0.4184 0.3046 0.2607 0.5284 0.3538 0.6626 0.6621 0.2524 0.2809 0.5680 0.4813

BPR [28] 0.6263 0.5602 0.4942 0.5384 0.6193 0.5307 0.6072 0.4962 0.4551 0.5490 0.4519 0.5271

Proposed 0.8931 0.8644 0.8817 0.8267 0.8141 0.8149 0.8351 0.8538 0.8053 0.8294 0.7712 0.7775

Table 6. Performances of different quality metrics on different distortion types in MCL-3D Database.

distortion is easily captured and evaluated.

The proposed metric performs well on AWN, GB, DB,

JPEG, JP2K, but performs slightly worse on TE distortion.

Since the TE distortion usually occurs in random positions,

so it may not be present in the edge blocks. This may be

the reason why the proposed metric is not that effective in

evaluating the transmission error distortion. Based on these

results, we can draw the conclusion that the proposed metric

achieves the best overall performance.

5. Conclusion

In this paper, we have proposed a novel depth image

quality metric for view synthesis. The proposed method

is based on the observation that distortions in depth images

mainly affect the edge regions, which in turn degrade the

quality of the synthesized images. The proposed metric is a

three-step approach, which comprises similarity map gener-

ation, weighting map generation and edge guided pooling.

All the three stages are designed by considering the charac-

teristics of depth images. So the proposed metric is more

effective in evaluating the depth distortions. This has been

verified by extensive experiments based on a view synthe-

sis quality database. Comparisons with the state-of-the-art

quality metrics also confirm the superiority of the proposed

metric.

An inspiration of the proposed metric is that in view syn-

thesis, the quality of a synthesized view can be measured

based on the quality of depth and texture images before

performing the actual rendering process, which is usually

computationally expensive. By this means, a DIBR algo-

rithm can automatically reject ‘bad’ inputs (regardless of

texture or depth images), so that an expected quality of syn-

thesized images can be guaranteed. The current work only

focuses on the evaluation of depth images. As future work,

it would be interesting to further incorporate texture images

to design a pre-rendering depth-texture quality metric for

measuring the quality of synthesized views.
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